Food contaminants

unintentional entry into food chain

- agriculture production
- pollution of environment
- storage, transportation, sale
- technological and cooking practice

classification

• primary contaminants (exogenous)

outside sources formation in food

secondary contaminants (endogenous)

contamination sources

agriculture production

- use of pesticides
- fertilisation
- emission
- water for irrigation
- use of surface water for irrigation
- attack by microorganisms, especially by moulds
- veterinary treatment

storage and processing

- post harvest application of pesticides
- formation from relatively non-toxic pesticides
- attack by microorganisms
- technological and cooking arrangement
- penetration of additives from plastic materials

judgement criteria

- potential risk and effects on human health
- incident frequency, proved as human or animal toxicant
- frequent occurrence in food representing important items of food basket
- persistence and frequency of occurrence in environment, possible conversion to products with higher toxicity, ability to be accumulated in food basket
- amount of entrance environment from industry, agriculture, urban agglomeration and other sources
- importance of food in which the given contaminant is present from the point of international trade

priority contaminants

- mycotoxins and other microbial toxins
- toxic elements
- radioactive isotopes
- nitroso compounds
- polycyclic aromatic hydrocarbons
- halogen containing organic compounds
- pesticides residua
- veterinary drug residua
- other contaminants (ethylcarbamate, contaminants from packaging materials)

standards and recommendation - Codex Alimentarius FAO/WHO legislation in CZ Zákon o potravinách a tabákových výrobcích č. 110/1997 Sb., Vyhláška č. 298/1997 Sb

perception of health risks associated with food

Drder	Scientist	General public
1	biological hazards	pesticides residua
2	natural toxins	industrial contaminants
3	industrial contaminants	additives
4	veterinary drug residua	veterinary drug residua
5	pesticides residua	biological hazards
6	additives	natural toxins

MYCOTOXINS

- toxic secondary metabolites of some moulds
- ~ 20 toxicologically important mycotoxins

producers moulds

Aspergillus, Penicillium, Fusarium

OCCURRANCE

- mouldy food
- residua in animal tissues and products
- foods produced by cultural moulds
- biotechnological products

FACTORS INFLUENCING CONTAMINATION

- biological
- chemical
- other (water activity, temperature)

Aflatoxins

- Aspergillus sp. (A. flavus, A. parasiticus), temperature, humidity (subtropical and tropical climate conditions)
- aflatoxins B and G
- high level corn, groundnut, pistachio
- medium level almond, walnut, raisin, spices
- toxicity (hepatotoxic, mutagenic, carcinogenic)

aflatoxin B₁

Changes in aflatoxin B₁ and M₁ levels during processing of contaminated materials

product	processing conditions	losses (%)
Peanuts	roasting, 150 °C, 30 min	20
	roasting in oil	35
peanut products	roasting, 204 °C	50-60
peanut oil	heating, 120°C, 10 min	0
milk	pasteuristion 72°C, 45 s	35
	sterilisation 115°C	19

hygienic limits

e.g.

- generally $20 40 \mu$ baby food $2 \mu g.kg^{-1}$ infantile food $1 \mu g.kg^{-1}$
 - 20 40 μg.kg⁻¹ (sum) 2 μg.kg⁻¹ (M₁) 1 μg.kg⁻¹ (M₁)

Patulin

• Penicillium patulinum, P. expansum

 apple, grapes, orange, ordinary contaminant of fruit concentrates and juices (< 0.1 mg.kg⁻¹)

4-hydroxy-4H-furo(3,2-c)pyran-2(6H)-on (patulin)

7a

3a

relatively stable at pH 3.0-6.5

changes during processing and storage

- storage –slow decrease
- juice thickening by vacuum distillation under vacuum decrease for about 25%
- pasterisation (90°C/10 s) decrease for about 20%
- ethanol fermentation rapid degradation
- micro-wave heating decrease for about 40 95%

trichothecenes

- Fusarium sp.
- cereals, oil plants, beer
- deoxynivalenol, nivalenol, T-2 toxin

deoxynivalenol, $R^1 = OH$, $R^2 = H$, $R^3 = H$

BACTERIAL TOXINS

- exotoxins a endotoxins
- exotoxins enterotoxins, cytotoxins neurotoxins

hygienic limits not determined

botulotoxins

- Clostridium botulinum
- neurotoxins, polypeptides, 19 amino acids
- non acidic preserved food products (smoked meats)
- anaerobic conditions, pH 4.8-8.5, 30 °C
- inactivation 80 ° C/10 min., 100 ° C/seconds
- factors water activity, temperature, NaCl, nitrites

other bacterial toxins

• Staphylococcus aureus, C. perfringens, Bacillus cereus

infection, propagation and formation of toxins in digestive tract

• Escherichia coli, Salmonella enteritidis, S. typhimurium

primary source meat, milk and eggs

NITROSO COMPOUNDS

reaction products of secondary amines with nitrosation agents:

nitration of secondary amines

secondary nitrosation amine agents

N-nitrosamine

- secondary amines: amino acids, biogenic amines etc.
- nitrosation agents: nitrosyl cation NO⁺, nitrogen oxides
- factors: pH, temperature, time, catalyst, reaction inhibitor

classification

- volatile nitrosamines: N-nitrosodimethylamine
- non-volatile nitrosamines N-nitrososarcosine

TOXICOLOGY

• mutagenic, teratogenic, carcinogenic effects

PERSISTENT ORGANOCHLORINE COMPOUNDS

polychlorinated biphenyls

• 209 congeners

(x+y = 1-10, x = number Cl in circle 1, y = number Cl in circle 2)

physical-chemical properties of technical PCB

- thermostability and photostability
- incombustible
- chemically inert
- high permitivity and excellent heat properties
- excellent miscibility with organic solvents
- high boiling points

bioacumulation

- bioconcentration (passive diffusion)
- biomagnification (due to transfer in food chain)

typical environmental distribution of PCBs in the eighties of the 20th century

components of environment	concentration (mg.kg ⁻¹)
vegetation	0.001 - 0.01
zooplankton	0.005 – 2.0
marine invertebrates	0.005 – 10
fish	0.01 – 25
marine mammal	0.1 - 1000 (in fat)
birds	0.1- 1000 (in fat)
eggs	0.05 - 500 (in fat)
humans	0.1 - 50 (in fat)

POLYCYCLIC AROMATIC HYDROCARBONS (PAH)

compounds with 2-6 condensed benzene rings

pyrene

fluarenthene

benzo[a]pzrene (B[a]P)

- formation by pyrosynthesis of organic matter (500-900 °C, for example by combustion of fossil fuels)
- some have mutagenic, carcinogenic activity

PESTICIDES

- higher harvest
- negative influence of agricultural chemisation

classification

- according to activity
 - insecticides (Insects)
 - acaricides (Mites)
 - fungicides (Fungi)
 - herbicides (Plant)
 - molluscicides (Snails)
 - rodenticides (Rodents)
 - regulators of plant growth, dessicators

insecticides

- interaction with cell membranes, neurotoxicity (persistent chlorinated hydrocarbons)
- inhibition of acetylcholinesterase, neurotoxicity (organophosphates, carbamates, pyrethroids)
- inhibition of chitin biosyntesis (esters of benzoylcarbamide)

herbicides

• interference with biosynthesis of nucleic acids

(phenoxyalkanoic and benzoic acids)

- interference with photosynthesis (triazines, uracils)
- reaction with cell membranes (bipyridyls)
- retardation of germination (nitroanilines)

fungicides

• inhibition of enzymatic systems

(ethylenebisdithiocarbamates, phtalimides)

interference with DNA biosynthesis (benzimidazoles)

PERSISTENT CHLORINATED HYDROCARBONS

contact insecticides

DDT, aldrin, dieldrin, toxafen, heptachlor, hexachlorbenzen (HCB), P-HCH, lindan, hexachloran, pentachlorfenol

products of p,p'-DDT transformation

MODERN PESTICIDES

Insecticides

chlorpyrifos (organophosphate)

(esters benzoylcarbamide)

other contaminants

ethyl carbamate

- natural compound of product of fermentation
- potential human carcinogen
- hygienic limits for wine, fruit distillates

 $CH_3 - CH_2 - O - C - NH_2$

Concentration (µg.kg⁻¹)

Food	
Bakery products	nd-20
Fermented dairy products	nd
Fermented sauces	nd-18
Vinegars	nd-33
Yeast extracts	41
Alcoholic beverages	
Beers	nd-1
Wines	nd-24
Rice wines (sake)	81-164
Liquers	nd-170
Vodka	nd-2140
Whisky	nd-1000
Rum	nd-1020
Brandy	nd-2100
Fruit brandy	nd-7920
Stone fruit brandy	nd-22 000

nd = not detected

chloropropanols secondary / endogenous contaminants process / technological contaminants

1978 Velíšek J., Davídek J., Hajšlová J., Kubelka V., Janíček G., Mánková B.: Chlorohydrins in protein hydrolysates. *Z. Lebensm. Unters. Forsch.*, **167**, 241-244

Z. Lebensm. Unters. Forsch. 167, 241-244 (1978)

Chlorohydrins in Protein Hydrolysates

Jan Velíšek, Jiří Davídek, Jana Hajšlová, Vladislav Kubelka*, Gustav Janíček, and Blanka Mánková Department of Food Chemistry and Analysis, Institute of Chemical Technology, CS-166 28 Prague 6, Czechoslovakia

Chlorhydrine in Eiweißhydrolysaten

Zusammenfassung. Es wurden vier Proben der Neutralfraktionen von Eiweißhydrolysaten mittels der Seasonings containing amino-acids, namely the chemical hydrolysates of proteins, used for the improvement of flavour of foods and to enhance their meaty flavour, have become important commodities in fabricated

C J. F. Bergmann-Verlag 1978

3-chloropropan-1,2-diol (3-MCPD)

 CH_2 -Cl

CH-OH

 CH_2 -Cl

2-chloropropan-1,3-diol (2-MCPD)

1,3-dichloropropan-2-ol (1,3-DCP)

 $CH_2-Cl = Cl OH$ CH-Cl = Cl OH Cl OH

Cl

OH

2,3-dichloropropan-1-ol (2,3-DCP)

esters of chloropropanols

factors of formation

□ content of fat and its composition (ratio of TAG, DAG, MAG)

- content of chlorides
- content of water

Latemperature and time of heating

🗖 pH

CONTAMINANTS FROM PACKAGING MATERIALS

corrosion, migration

- metals
- glass and ceramics
- paper
- wood
- polymeric materiales

residua of raw materials

residua of auxiliary substances (additives)

residua of degradation products or additives

PHTALATES

- plasticizer of plastics
- possible teratogenic, carcinogenic effects
- estrogenic activity
- hygienic limits (book 3, tab.12.59) permitted level, alc. drinks=1.0 mg.kg⁻¹ (DBP+ DEHP)

Dibutylphthalate bis(2-ethylhexyl)phthalate $\mathbf{R} = \mathbf{R}^1 = (\mathbf{CH}_2)_3 \mathbf{CH}_3$

 $\mathsf{R} = \mathsf{R}^1 = \mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_2\mathsf{CH}_3)(\mathsf{CH}_2)_3\mathsf{CH}_3$

occurrence in food

- contamination of raw materials
- contamination of finished products from packaging material

factor influencing migration

- kind of polymers
- kind of food
- temperature
- time of contact
- quantity in food and others.