Minerals and trace elements in food and diet

Mineral elements in food

Definition: chemical elements contained in the ash of the foodstuff (matter remaining after total oxidation of organic compounds)

Ash content – used as an approx. indicator of the total content of mineral elements

Origin of mineral elements in food:

- naturally occurring food components
- contaminants
- additives

Classes of mineral elements

According to content

According to significance

- major elements (content > 100 mg/kg) (Na), K, Mg, Ca, Cl, P, (S)
- trace elements
- essential elements

 major + Fe, Zn, Cu, Mn,
 (Ni, Co), Cr, Si, (Mo, B),
 Se, I, F
- toxic elements Pb, Cd, Hg, As
- non-essential elements

Total amount of some elements in an adult human body

Ca	1000-1500 g	Fe	3-5 g	Ni	10 mg	
Р	420-840 g	Zn	1.5-3 g	Cr	5 mg	
К	140-180 g	F	0.8-2.5 g	V	<1-20 mg	
S	140 g	Si	1.4 g	Ι	10-30 mg	
Cl	70-110 g	Cu	100-180 mg	Se	10-20 mg	
Na	70-100 g	Mn	10-20 mg	Со	1-1.5 mg	
Mg	24-40 g	Мо	5-10 mg	Cd	5-30 mg	

1 H																	2 He
3	4								5	6	7	8	9	10			
Li	Be								B	C	N	0	F	Ne			
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87 Fr	88 Ra	89 Ac	104														

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pr	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Compounds of metals

examples of amino-acids chelates:

M(His)₂

N-/H₂

0

=0

Examples of metal-peptide complexes:

Metal-binding peptides of plant origin *phytochelatines* (peptides derived from *glutathione*)

Glutathione γ Glu-Cys-Gly

Phytochelatins (γ Glu-Cys)_nGly

Metal-binding polypeptides in animal tissues *metallothioneins* (MT) occurrence: liver, kidney, intestinal wall, pancreas, brain structure: peptide chain containing 60-63 AA, 20 Cys M_r : 6000-8000 a melacula of MT can bind up to 7 storms of Cd. Zp. Cy

a molecule of MT can bind up to 7 atoms of Cd, Zn, Cu...

Schematic AA sequence of mammalian MT: is Cys, is other AA than Cys

Other compounds of metals:

- complexes with organic acids (*citric, tartaric, phytic* etc)
- insoluble salts of organic acids (*calcium oxalate, ferric phytate*)
- complexes of polysaccharides (pectin)
- metalloporphyrins (chlorophyls, hem)

• organometallics (MeHg⁺, Me₂Hg, Et₄Pb, Bu₄Sn, Bu₃SnX)

Compounds of metalloids and non-metals

Sodium and potassium

Biochemical roles

- maintaining of osmotic pressure
- activation of enzymes : α -amylase (Na)
- effect on muscle activity

Metabolism

- rate of absorption approx. 90 %
- excretion in urine and sweat (Na)

Contents in foodstuffs

- Na: from tens mg/kg to units %
- K: from thousands mg/kg to units %

Recommended dietary intakes

- Na: 0.5 to 2.4 g/day (2.4 g Na is equivalent to 6 g NaCl)
- K: 2 g/day

Magnesium and calcium

Biochemical roles

- enzymes activation (Mg phosphatases, kinases)
- effect on muscle activity (Ca activation of myosin)
- regulatory functions
- blood coagulation (Ca fibrinogen \rightarrow fibrin transformation)
- building up bones

Absorption

- Mg absorption 40-50 % (decreased by phytic acid)
- Ca absorption 2-70 % (decreased by phytic acid, oxalic acid, increased by proteins)

Magnesium and calcium

Occurrence in food

- Mg: hundreds mg/kg to thousands mg/kg (higher content in food of plant origin)
- Ca: hundreds mg/kg to thousands mg/kg (higher content in milk and dairy products)

Recommended dietary intakes

- Mg 300-350 mg/day (adults), 70-200 mg /day (children), 450 mg/day (pregnant women and nursing mothers)
- Ca 800 mg/day (adults), 400-500 mg /day (children), 1200 mg /day (teenagers, pregnant women and nursing mothers)

Phosphorus

Biochemical roles

- energy storage (ATP)
- activation of substrates in enzyme-catalysed reactions
- activation of enzymes
- regulatory functions (cAMP, enzyme co-factors)
- building up biological structures (bones, bio-membranes)

Absorption

- absorption rate 50-70 % (low absorption of P bound in phytic acid)
- effect of Ca optimum Ca/P ratio: from 1:1 to 2:3

Phosphorus

Occurrence in food

- chemical compounds: phytic acid (high content in cereals, legumes, nuts), other organic phosphates, inorganic phosphates, phosphoric acid
- content: hundreds mg/kg (vegetable, fruit) to thousands mg/kg (dairy products, egg yolk, cereals, legumes)

Recommended dietary intakes

- adults: 1200 mg/day
- children: 300-800 mg/day

Iron

Biochemical roles

- oxygen transport (hemoglobin)
- oxygen storing in muscle tissue (myoglobin)
- constituent of enzymes (catalase, peroxidase, cytochroms etc)

Absorption

- absorption rate 5-15 % (30-60 % in te state of defficieny)
- better availability of hem containing iron compounds
- non-hem iron forms:
 - reduced bio-availability in the presence of <u>phytic acid</u>, plant <u>phenolic compounds</u> (tannins from tea) and some types of <u>dietary fibre</u>
 - <u>ascorbic acid</u>, organic acids, amino-acids (His, Lys, Cys) and sugars **increase iron bio-availability**
- effect of iron valency: Fe²⁺ > Fe³⁺

Iron

Occurrence in food

- total Fe content: units to hundreds mg/kg
- high Fe content: kidney, liver, egg yolk, tea leaves, legumes
- low Fe content: fish, poultry, vegetables (except spinach), fruit
- very low Fe content: milk, dairy products
- Fe-enriched food: infant formulas (addition of ferrous fumarate)

Recommended dietary intakes

- 10 mg (men), 12 mg (boys)
- 15 mg (girls and women), 30 mg (pregnant women)
- 6-10 mg (children)

Zinc and copper

Biochemical roles

- catalytic activities: metalloenzymes
- Cu affects metabolism of Fe

Absorption

- absorption rate: Zn approx. 30 %, Cu 25-70 %
- proteins and amino-acids increase Zn bio-availability
- phytic acid decreases Zn bio-availability
- ascorbic acid decreases Cu bio-availability

Occurrence in food

- Zn content: units to tens mg/kg
- Zn-rich food: cheese, liver, legumes, cereals
- Cu content: units mg/kg or lower
- Cu-rich food: liver, legumes, mushrooms

Zinc and copper

Group	Zn (mg/day)	Cu (mg/day)			
Men	15	1.5-3			
Women	12	1.5-3			
pregnant	15	1.5-3			
nursing	16-19	1.5-3			
Children	5-10	0.4-2			

Recommended dietary intakes

Iodine

Biochemical roles

constituent of thyroid gland hormones (thyroxine, triiodothyronine)

Metabolism

- absorption rate 100 %
- 60 µg/day is fixed in thyroid gland, excess is excreted in urine

Occurrence in food

- sea fish: hundreds µg/kg to units mg/kg
- \bullet milk, dairy products tens to hundreds $\mu g/kg$
- other food: units to tens $\mu g/kg$

Recommended dietary intakes

- 150 µg/day (adults)
- 175 µg/day (pregnant women), 200 µg/day (nursing women)
- 40-50 µg/day (babies), 70 µg/day (toddlers), 90-120 (children)

Selenium

Biochemical roles

- constituent of glutathioneperoxidase
- participation in metabolism of iodine

Metabolism

- absorption rate 50-100 %
- urinary excretion

Occurrence in food

- strongly depends on Se content in soil, water etc.
- higher Se content (tens µg/kg to units mg/kg): sea fish, liver, kidney, wholemeal cereals

Recommended dietary intakes

- 70 µg/day (men)
- 55 µg/day (women), 65-75 µg/day (pregnant and nursing women)
- 20-30 µg/day (toddlers and children),
- 40-45 µg/day (teenagers)