Mathematical modelling of processes in Chemical Engineering MatLab quick-reference sheet

Algebraic equations (AE)	Ordinary differential equations (ODE)	Differential-algebraic equations (DAE)
	Mathematical formulation	
$\mathbf{f}(\mathbf{y}) = 0$	$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \text{IC:} \mathbf{y}(0) = \mathbf{y}_0$	$\mathbf{F}(t, \mathbf{y}, \mathbf{y}') = 0$ IC: $\mathbf{y}(0) = \mathbf{y}_0, \mathbf{y}'(0) = \mathbf{y}'_0$
	Matlab model function header	
<pre>function res=model(y,pars)</pre>	<pre>function yp=model(t,y,pars)</pre>	<pre>function res=model(t,y,yp,pars)</pre>
	What to do before calling numerical algorithm fu	nction?
<pre>pars = []; set parameters</pre>	<pre>pars = []; set parameters</pre>	<pre>pars = []; set parameters</pre>
yg = []; make guess	y0 = []; set IC	<pre>yg = []; ypg = []; fixed_y = []; fixed_yp = []; [y0,yp0] = decic(@(t,y,yp) model(t,y,yp,pars), t0, yg, fixed_y, ypg, fixed_yp); set IC and verify that IC are consistent</pre>
	Numerical algorithm function call	
<pre>y = mmfsolve(@(y) model(y,pars), yg)</pre>	<pre>[tt,yy] = ode45(@(t,y) model(t,y,pars), [0,tend], y0)</pre>	<pre>[tt,yy] = ode15i(@(t,y,yp) model(t,y,yp,pars), [0,tend], y0, yp0)</pre>
	What to do with results?	
<pre>model(y,pars), verify that problem has con- verged to a solution</pre>	<pre>plot(tt,yy(:,1),), plot results</pre>	<pre>plot(tt,yy(:,1),), plot results</pre>
	Notes	
mmfsolve is not part of MatLab installation but must be downloaded from an open source. If Mat- Lab installation contains optimization toolbox, it is recommended to use function fsolve instead.	An implicit solver, function ode15s, can be used for stiff systems.	

Partial differential equation (PDE) / Boundary value problem ODE

Finite volume method can be used to convert PDE to set of ODE (parabolic and hyperbolic PDE) or AE (elliptic PDE or boundary value problem ODE).