Chemical Robotics in Medicine: Components, Perspectives and Applications

František Štěpánek

VŠCHT Praha Fakulta chemického inženýrství Ústav chemického inženýrství

Centralizovaný rozvojový projekt MŠMT č. C29: "Integrovaný systém vzdělávání v oblasti výskytu a eliminace reziduí léčiv v životním prostředí"

Motivation and Aims

How many molecules are known to mankind?

Source: www.cas.org

🚰 сноботіх

substance information from the world's disclosed chemistry to the CAS REGISTRYSM, the gold standard for chemical substance information.

How many of them are FDA-approved drugs?

Open Data Drug & Drug Target Database

Statistics				
Drug Statistics				
Total Number of Small Molecule Drugs	7451			
Total Number of Biotech Drugs	289			
Total Number of Approved Drugs	1741			

Total Number of Approved Drugs 1741

Total Number of Experimental Drugs	5064
Total Number of Illicit Drugs	186
Total Number of Withdrawn Drugs	163
Total Number of Drugs	7740

Motivation and Aims

1,741 : 89,578,080 ≈ **1 : 50,000**

CHODOTIX

- 1. Low/insufficient potency
- 2. Too high potency/toxicity
- 3. Unsuitable for established manufacturing, formulation and supply chain paradigms

Problem of high potency

Pharmacokinetic profile – single dose response

Problem of high potency

<u>Problem</u>: systemic application of pre-existing API

Problem of high potency

<u>Possible approach</u>: local, in-situ production of API

In-particle production of API

Engineering challenges

- 1) Design and synthesis of structured microparticles (*"*embodiment")
- 2) Control of local reaction-diffusion process
- 3) Control of particle transport/desposition

CHODOTIX

Design of a chemical microrobot

Chemical robot = Internally structured functional particle

Structural and functional sub-systems:

CHODOTIX

- 1. Semi-permeable shell (integrity)
- 2. Variable diffusion rate (transport)
- 3. Internal reservoirs (**storage**)
- 4. Chemical reaction "on-demand"
- 5. Surface functionalisation (**adhesion**)
- 6. Remote control (communication)

Modularity!!!

Physical implementation

Storage vesicles (reversible, step change of difusion) Hydrogel with immobilised enzymes Radiofrequency responsive nanoparticles Covalently coupled antibody

1. Embodiment

Powder Technol. 200 (2010) 254-259 Chem. Eng. Sci. 66 (2011) 3829-3835

1. Embodiment

- Sol-gel or LbL (layer-by-layer) deposition process
- SiO₂ layer is flexible but improves chemical and mechanical stability
- Prevents leakage of internal components and allows surface functionalisation

Сноботіх

10µm

39 16 SE

X1,000

20kV

J. Coll. Interf. Sci. 394, 380-385 (2013)

Gating effect using grafted polymer brushes

Gating effect using a phase change material

Remotely controlled toys

Remotely controlled chemistry

СНОВОТІХ

Chemical reactor

Cell

J. Coll. Interf. Sci. **394** (2012) 380-385 Coll. Surf A **410** (2012) 52-57 Langmuir **29** (2013) 4381-4387

Iron oxide – silica composites

Sample no.	Silica:iron oxide ratio (w/w)
1	1:0.0
2	1:0.1
3	1:0.2
4	1:0.4
5	1:0.8

Radiofrequency heating

Radiofrequency controlled diffusion "on demand"

СНОВОТІХ

Design of a chemical microrobot

B

 $A + B \rightarrow C +$

<u>Structural and functional sub-systems:</u> 1. Semi-permeable shell (integrity) 2. Variable diffusion rate (transport) 3. Internal reservoirs (storage) 4. Chemical reaction "on-demand"

СНОВОТІХ

- 5. Surface functionalisation (adhesion)
- 6. Remote control (communication)

In-situ enzymatic production of an unstable active from stable precursor

$$\frac{dc_{in}}{dt} = -k_1 c_{in}$$

$$\frac{dc_{ox}}{dt} = -k_2c_{ox} + k_1c_{in}$$

Sigmoidal dependence on T

$$k_1 = k_m \frac{1}{1 + \exp\left(-b(T - T_m)\right)}$$

Arrhenius law

$$\ln k_2 = \frac{A}{T} + B$$

Enzyme: laccase Substrate: ABTS

Ullrich et al., Chem. Eng. Sci. 2014

Radiofrequency pulse sequences to control production rate of active

Model-predictive control to maintain active concentration above threshold

- antigen CA IX (carbonic anhydrase 9)
 - transmembrane protein
 - expressed in cancers (lung, colon, breast, cervix, ovaries, brain, oral cavity...)
- antibody M75
 - recognizes unique PG domain of CA IX

antigen tumor cell

- 4 types of particles:
 - specific : SiO₂-M75
 - unspecific: SiO₂-IgG-X
 SiO₂-BSA
 - unmodified: SiO₂

- ELISA *enzyme-linked immunosorbent assay* spectrophotometric detection of specific protein (antibody)
- ELISA-like no need of secondary antibody for detection

increasing exposure time of SiO₂-M75 with PG-MBP modified plastic slides

Fluid velocity (mm/s)

HT-29 cell line (derived from colorectal carcinoma) expressed antigen CA IX which binds with M75-modified particles

NIH 3T3 (embryonic fibroblast cell line)

- no expression of CA IX on surface
- negative control

CHODOTIX

 \mathbf{O}

On-going work: in vivo studies

NU/NU nude mice Human carcinoma HT-29 Multi-modal imaging (MRI & Fluorescence)

Design of a chemical microrobot

$A + B \rightarrow C + D$ C 5 4

Structural and functional sub-systems:

СНОВОТІХ

- 1. Semi-permeable shell (integrity)
- 2. Variable diffusion rate (transport)
- 3. Internal reservoirs (**storage**)
- 4. Chemical **reaction** "on-demand"
- 5. Surface functionalisation (**adhesion**)
- 6. Remote control (communication)

Conclusions

Multi-compartment particles - "chemical robots"

CHODOTIX

- Remotely controlled diffusion by RF signals
- Control of enzymatic reaction
- Control of adhesion via antigen-antibody interaction

Applications

- 1) Cancer theragnostics (MRI imaging + RF triggered drug release)
- 2) Delivery of natural fungicides (crop protection)
- 3) Delivery of unstable natural antibiotics allicin

Garlic bulb (Allium sativum)

Allicin (bactericidal but unstable)

СНОВОТІХ

Thank you

www.chobotix.cz

